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In a linear setting we consider the three-dimensional problem of the penetration of a 
blunt body into a half-space of ideal compressible fluid, where the rate of expansion of the 
boundary of the wetted surface of the body is greater than the speed of sound in the fluid 
(supersonic case). 

It is well-known that the solution of such problems in a general setting is given by an 
expression involving a retarded potential [1-5]. In the present problem we identify a class 
of self-similar problems involving the penetration of blunt bodies into a compressible fluid. 
We show that the general formulations simplify in the case of axisymmetric self-similar prob- 
lems. We supply the results of some numerical calculations. For the self-similar problem 
involving the penetration of a blunt cone the results agree with those obtained in [i, 4]. 

i. Statement of the Problem. Let us assume that a rigid blunt body penetrates with 
speed V(t) an ideal weightless weakly compressed fluid occupying, in a state of rest, the 
half-space z3~ 0. The velocity of the body is assumed to be perpendicular to the plane x~ = 0. 
It is assumed that V(t), over the whole duration of the operation, is small in comparison 
with a (the speed of sound in the fluid); in addition, it is assumed that the rate of expan- 
sion of the region of interaction of the body with the fluid at each point of its boundary 
is greater at an arbitrary time instant than the speed of sound (the rate of expansion is 
calculated along the normal to the boundary). 

We take the origin of a Cartesian coordinate system at the point where the body first 
touches the free surface. Axis x~ is directed downwards into the fluid, and axes x I and x 2 
lie.along the initial free surface. 

The penetrating bodies are blunt, i.e., we assume that the angle between the tangent 
plane to the body and the plane x s = 0 is small over the whole interval of time of consider- 
ation of the problem; the depth of penetration is small and the solution of the penetration 
problem can be sought on the basis of the linearized equations of hydrodynamics [1-3]. The 
boundary conditions with the boundary of contact of the body with the fluid are referred to 
the plane x~ = 0. The flow that arises is assumed to be potential flow.r 

The velocity of the fluid particles v = {vl, v2, v~} and the pressure p(x, t) are de- 
termined in terms of the potential ~ from the formulas [1-5] 

�9 v(x, t) ----grad qa(x,: t), p = --pO~(x, t)/Ot ( 1 . 1 )  

(p i s  t h e  i n i t i a l  d e n s i t y  o f  t h e  f l u i d ) .  The p e n e t r a t i o n  problem t h e n  r e d u c e s  t o  f i n d i n g  
t h e  p o t e n t i a l  r  t )  s a t i s f y i n g  t h e  wave e q u a t i o n  

+ + a 2 (x, t) = o v t  > o, ( 1 . 2 )  

t h e  boundary  c o n d i t i o n  

O~(xl, x2,: O, t)/Ox~ = V(t), (x .  z2) ~ G(t) ( 1 . 3 )  

[G(t) is the region of interaction of the body with the fluid], and the condition 

(D------0 (1.4) 

on the front of the wave and before it. 

The region of interaction G(t) in the supersonic case may be determined directly from the 
form of the surface of the penetrating body. In particular, if the surface of the blunt body 
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is given by the function x 3 = --f(x l, x2), then the points (x~(t), x~(t)), lying on the bound- 
ary ~G(t) of the region of interaction, satisfy at time t the condition 

. ; )= (1.5) 
0 

2. Three -Dimens iona l  S e l f - S i m i l a r  Problems.  Genera l  methods f o r  t he  s e l e c t i o n  of  s imi -  
l a r i t y  t r a n s f o r m a t i o n s ,  p e r m i t t e d  by t h e  d i f f e r e n t i a l  e q u a t i o n s ,  a r e  p r e s e n t e d  in  [6 ] .  We 
c o n s i d e r  below on l y  one t r a n s f o r m a t i o n ,  p e r m i t t e d  by Eq. ( 1 . 2 ) ,  namely,  a t r a n s f o r m a t i o n  of  
s t r e t c h i n g  of  t h e  c o o r d i n a t e s ,  i . e . ,  s e l f - s i m i l a r  problems.  In  t h i s  c l a s s  of  problems,  f o r  
bod ies  whose s u r f a c e  i s  s p e c i f i e d  by a p o s i t i v e  smooth homogeneous f u n c t i o n  of  deg ree  d, 
( d ~ i ) ,  we o b t a i n  t h e  f o l l o w i n g  s i m i l a r i t y  s t a t e m e n t .  

S ta t ement  1. Le t  t he  form of  t h e  s u r f a c e  of  t he  body be g iven  by a f u n c t i o n  f such t h a t  

W ~ > O  ](X.~, ~x~) = Z ~ ( x .  z~) V(x. ~ ) ~ R  ~, ( 2 . 1 )  

and let the penetration velocity be a step function of the form 

V( 0 = V(t)t (d-l) ( 2 . 2 )  

[V(1) is a constant]. 

Then, if a solution of problem (1.2)-(1.5), specified by the potential r is known at a 
time tl, (t I > 0), the solution at an arbitrary time t, (t > 0), is determined from the simi- 
larity relationship 

�9 (x, t) = ~-d~(~x, t 0 (~ = t i t ) .  ( 2 . 3 )  

Moreover, the region g(t) is obtained from g(t I) by a homothetic transformation with center 
at the coordinate origin: ((xl, x2)~G(t))~-((%xl, %z2)~G(t1~. This may be proved by directly 
verifying that the expression (2.3), with Eqs. (2.1) and (2.2) taken into account, satisfies 
the conditions (1.2)-(1.5). The verification is made in the same way as in the proof of 
similarity theorem in a three-dimensional contact problem of elasticity theory (see, for ex- 
ample, [7]). 

COROLLARY. It follows from Statement i and conditions (i.i) that in the case under 
consideration the velocity vector and the pressure at a point of the fluid are determined 
from the similarity relations v(x, t) = s tl) , p(x, t)=% (I-~) p(%x, tl). 

Remark. A similar statement relating to similarity is also valid in the subsonic case 
of the problem under consideration. 

3. Solution of Problems for Bodies of Revolution. It is a known fact [i, 3, 7] that 
the velocity potential in a problem involving a body of arbitrary shape can be written in 
the form 

I [ [ a r  ( 3 . 1 )  @ ( x ,  t) 2~ ~ " q 

R 2 

where rl = V ( x l - [ )  = + ( x 2 - ~ )  = +x~. Moreover ,  t h e  f o r c e  Y wi th  which t h e  body a c t s  on t he  
f l u i d  i s  de t e rmined  from t he  e x p r e s s i o n  [5] 

F(~ = paZY(t) (3 .2 )  

[S i s  t h e  a r e a  of  t h e  r e g i o n  G ( t ) ] .  We remark t h a t  t h e  f u n c t i o n  O~/Oxa(g, ~, O, t - -rJa)  i s  
known: i f  (g, ~ ) ~ G ( t - - r l / ~ ,  i t  i s  equa l  to  V ( t - - q / ~ 4  in  the  c o n t r a r y  case  i t  i s  equa l  to  z e ro .  
Thus, in principle, the problem is solved for a body of arbitrary shape. However, the solu- 
tion in concrete cases encounters definite difficulties [1-4]. 

For a body of revolution in a cylindrical coordinate system r, 8, z(x I = r cos 8, x 2 = 
r sin 8, x a = z) we find that the shape of the body at an arbitrary time satisfies the equa- 
tion z = -f(r). 

Statement 2. Let a blunt body of revolution, whose shape may be described by an arbi- 
trary monotonically increasing smooth function f(r), f(O) = 0, penetrate into an ideal com- 
pressible fluid half-space with velocity V(t). Here 

v ( ~  = ~'(~t) ( 3 . 3 )  
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(c is a positive constant). Then the rate of propagation of the boundary 3G(t) of the re- 
gion of interaction is constant and equal to c. 

Proof. Let r,(t) be the radius of the boundary 8G(t) of the region of interaction. 
t 

From Eqs. (1.5) and (3.3) we then have / ( r , ( t ) ) =  Jv(x)d~:=l(ct),: from which we obtain r,(t) = ct, 
i.e., Statement 2 is valid, o 

If we denote by M the ratio of the constant rate c of expansion of the radius r, to the 
speed of sound a, we find r.(t)= Mat, M = c/a, M > i. If the body of revolution is determined 
by the power function z =--Ard(A >O)~and the speed of the body by the expression (2.2), then 
c = (V(1)/Ad)~/a. 

For a body whose shape is described by a power function, the force of interaction with 
the fluid, taking relation (3.2) into account, is F(t)=~ap(Ad)-(~/a)V(1)iI+s/a)t(a+x). Expression 
(3.1) for the velocity potential assumes the form 

0~ ~ 
(I) (r, z, t) - -  V(t) ~ f  ( t - - r l / a ) < d - i ) , d , d O ,  (3  4) 

2Y~ r 1 " " 
0~ r 

where r i= ~r 2 +z 2 +~p2_2rr 9---- f~+~2; 0 is the angle between the vectors r andr 

For the limiting values (8)i, 2 and (*)1,2 (similar to what was done in the self-similar 
problem involving a blunt cone [i, 4]), we obtain, taking relation (3.3) into account, the 
following: for r ~ + z ~ <.~ a~t ~ 

0 i = O ,  O 2 = 2 n ,  9 1 = 0 , ~  
M 

~A M s _ -l[at-- Mrcos0  - -  ]/'(at - -  Mr cos0) 2 + (a2t 2 - -  r 2 - -  z 2) (M 2 - -  ~]~ 

for r z + z  ~ > a z t  2 

M2 [ a t - -  M r c o s 0 +  ] f  (at--MrcosO) ~-~ (a~t2--r2--z2)(M2-- t)],, 
. 1 , ~  (M S - l )  

O : = - - O , , ~  0 o = 0 , ,  O , =  arccos[ a t +  V(i--MZ)(a2t2--r2--z2)  J �9 " ~F �9 

We introduce the dimensionless variables r0, z0, ~0, (~.)0, V0, qD0, Po, where r0 = r/(at), zo = z/(at), 

~o = ~/(at), (~b,) o = ~, / (at) ,  Vo = V/a, (1) o (D/(a~t), Po = P/(pa2V'o) �9 H e n c e f o r t h  we s h a l l  u s e  o n l y  t h e  
dimensionless variables, omitting the subscript in doing so. We can then write expression 
(3.4) as 

02 ~2 

�9 ( r , z , t ) =  V ( t ) f f  (t--rt)(d--1) 
- -  2 ~  r l  - -  ~ ) d * d O .  ( 3 . 5 )  

Ox ~Px 

For the case in which d is a positive integer we find from Eq. (3.5) that 

= v (t) -- -~--- ( I ) i +  X ( d - - t ) ( d - - 2 )  .. .  (d--2n) ( d - - i ) . . . ( d - - 2 n - ~  I) 
n=i  (2n)l P~n- i  - -  Z P2n-2 

w h e r e  K = N - 1,  L = N f o r  d = 2 N , u  t ,  2 . . . .  ; K  = N ~  L = N + I  f o r  d = 2 N + l ,  V N =  0 ,  
i ..... Here we have introduced the notation 

02 ~ 02 r 02 '2 

::* =If =; S - 
Oi '~i Oi ~i Oi ~i 

( 3 . 6 )  

The inner integrals in expression (3.6) can be taken in another way. 

As an example, we consider the case d = 2, i.e., we consider the problem of uniform 
acceleration of penetration into the fluid of a paraboloid. Then 

[ ~ 1 = v( t )  v( t )  ( I ) : - -  t 
- 2 ~  [ ~  - e e l  2 ~  - 7  ( * ~  - *~) dO . 
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Fig. 1 

The function ~i can be brought to the form 

i2[ "l'l,~l,J~;~--rc~ 0 x = rl(~)--rl(~x ) + rcosO in ~'-:--~-_ ~ p - / q [ - ~ |  dO, 
01 

which gives the solution of the problem of penetration of a blunt cone into a compressible 
fluid [ 1 ]. 

Figure I shows graphs of pressure distribution p over the wetted surface of a body in 
two self-similar problems for M = 2: curve 1 is for the penetration of a cone (d = i), and 
curve 2 is for the penetration of a paraboloid (d = 2). 

The author thanks A. G. Khovanskii for useful discussions of the present paper. 
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